Poster at Workshop for Professor L. Lovász, Kyoto Prize Laureate, Nov.16–18, 2010, Tokyo

On Partitioning Colored Points

Takahisa Toda, Kyoto University

When Can We Divide Colored Points along the Colors by Hyperplanes?

Let X be a finite subset of \mathbb{R}^d , and suppose that each point in X is painted with one of k colors. We say that a subset S of X can be *partitioned along the colors by hyperplanes* if there is a collection \mathcal{F} of hyperplanes satisfying the following conditions: • every hyperplane in \mathcal{F} avoids the points in S;

every two points in S with different colors can be separated by some hyperplane in F;
no hyperplane in F separates points in S with the same color.

In particular, for the case of 2 colors, we say that S can be *separated along the colors*.

Kirchberger's Theorem [2]

Let X be a finite subset of \mathbb{R}^d , and suppose that each point in X is painted with one of 2 colors. If every d+2 or fewer points in X can be separated along the colors, then all the points in X can be separated along the colors.

Basic Notions and Results

For a finite subset X of \mathbb{R}^d , we denote by $\mathcal{H}(X)$ the set of all partitions of X that can be realized¹ by hyperplanes.

We introduce key notions.

Definition

• A subset \mathcal{S} of $\mathcal{H}(X)$ is a *full subdivision* of $\mathcal{H}(X)$ if every distinct two elements in X can be separated by some member of \mathcal{S} .

Proposition 1 $\tau_d(k) = \sum_{i=0}^{d-1} \binom{k-2}{i}, \quad \eta_d(k) = \sum_{i=0}^d \binom{k-2}{i}.$

It is known that $|\mathcal{H}(X)| = \sum_{i=0}^{d} {\binom{k-1}{i}}$ holds for all sets X of k points in general position in \mathbb{R}^{d} . Let us denote this number by $\phi_{d}(k)$. We immediately obtain the following equation:

• A subset of $\mathcal{H}(X)$ is called a *transversal* for the full subdivisions of $\mathcal{H}(X)$ if it intersects all the full subdivisions of $\mathcal{H}(X)$.

Notation

We denote by $\tau_d(k)$, resp. $\eta_d(k)$, the minimum, resp. the maximum, cardinality of minimal transversals for the full subdivisions of $\mathcal{H}(X)$ for all sets X of k points in general position in \mathbb{R}^d .

Proposition 2

$$\tau_d(k) + \eta_d(k) = \phi_d(k).$$

Proposition 3 Let X be a set of $k \geq 2$ points, which need not be in general position, in \mathbb{R}^d . The cardinality of minimal transversals for the full subdivisions of $\mathcal{H}(X)$ is at most $\eta_d(k)$.

A Colorful Kirchberger-type Theorem

Let X be a finite subset of \mathbb{R}^d , and suppose that each point in X is painted with one of k colors. If every $(d+1) \cdot \eta_d(k) + k$ or fewer points in X can be partitioned along the colors by hyperplanes, then all the points in X can be partitioned along the colors by hyperplanes.

We remark that Arocha et al. [1] and Pór [3] studied other Kirchberger-type theorems, which are different from ours. It is remained as a future work to improve the number $(d+1) \cdot \eta_d(k) + k$ in our theorem.

References

[1] J.L. Arocha, I. Bárány, J. Bracho, R. Fabila, and L. Montejano, "Very colorful theorems," Disc. Comput. Geom., vol.42, pp.142–154, 2009.
[2] P. Kirchberger, "Über tschebyscheffsche annäherungsmethoden," Math. Ann., vol.57, pp.509–540, 1903.
[3] A. Pór, Diploma Thesis, Eötvös University, Budapest, 1998.

We say that a partition P of X can be *realized by a hyperplane* if $P = \{X \cap h^+, X \cap h^-\}$, where h^+ and h^- are the two open halfspaces associated with h.