On Partitioning Colored Points

Takahisa Toda, Kyoto University

When Can We Divide Colored Points along the Colors by Hyperplanes?

Let X be a finite subset of \mathbb{R}^{d}, and suppose that each point in X is painted with one of k colors. We say that a subset S of X can be partitioned along the colors by hyperplanes if there is a collection \mathcal{F} of hyperplanes satisfying the following conditions:

- every hyperplane in \mathcal{F} avoids the points in S;
- every two points in S with different colors can be separated by some hyperplane in \mathcal{F};
- no hyperplane in \mathcal{F} separates points in S with the same color.

In particular, for the case of 2 colors, we say that S can be separated along the colors.

Kirchberger's Theorem [2]
Let X be a finite subset of \mathbb{R}^{d}, and suppose that each point in X is painted with one of 2 colors. If every $d+2$ or fewer points in X can be separated along the colors, then all the points in X can be separated along the colors.

Basic Notions and Results

For a finite subset X of \mathbb{R}^{d}, we denote by $\mathcal{H}(X)$ the set of all partitions of X that can be realized ${ }^{1}$ by hyperplanes.

We introduce key notions.

Definition

- A subset \mathcal{S} of $\mathcal{H}(X)$ is a full subdivision of $\mathcal{H}(X)$ if every distinct two elements in X can be separated by some member of \mathcal{S}.
- A subset of $\mathcal{H}(X)$ is called a transversal for the full subdivisions of $\mathcal{H}(X)$ if it intersects all the full subdivisions of $\mathcal{H}(X)$.

Notation

We denote by $\tau_{d}(k)$, resp. $\eta_{d}(k)$, the minimum, resp. the maximum , cardinality of minimal transversals for the full subdivisions of $\mathcal{H}(X)$ for all sets X of k points in general position in \mathbb{R}^{d}.

Proposition 1

$$
\tau_{d}(k)=\sum_{i=0}^{d-1}\binom{k-2}{i}, \quad \eta_{d}(k)=\sum_{i=0}^{d}\binom{k-2}{i}
$$

It is known that $|\mathcal{H}(X)|=\sum_{i=0}^{d}\binom{k-1}{i}$ holds for all sets X of k points in general position in \mathbb{R}^{d}. Let us denote this number by $\phi_{d}(k)$. We immediately obtain the following equation:

Proposition 2

$$
\tau_{d}(k)+\eta_{d}(k)=\phi_{d}(k)
$$

Proposition 3

Let X be a set of $k(\geq 2)$ points, which need not be in general position, in \mathbb{R}^{d}. The cardinality of minimal transversals for the full subdivisions of $\mathcal{H}(X)$ is at most $\eta_{d}(k)$.

A Colorful Kirchberger-type Theorem

Theorem

Let X be a finite subset of \mathbb{R}^{d}, and suppose that each point in X is painted with one of k colors. If every $(d+1) \cdot \eta_{d}(k)+k$ or fewer points in X can be partitioned along the colors by hyperplanes, then all the points in X can be partitioned along the colors by hyperplanes.

We remark that Arocha et al. [1] and Pór [3] studied other Kirchberger-type theorems, which are different from ours. It is remained as a future work to improve the number $(d+1) \cdot \eta_{d}(k)+k$ in our theorem.

References

[1] J.L. Arocha, I. Bárány, J. Bracho, R. Fabila, and L. Montejano, "Very colorful theorems," Disc. Comput. Geom., vol.42, pp.142-154, 2009.
[2] P. Kirchberger, "Über tschebyscheffsche annäherungsmethoden," Math. Ann., vol.57, pp.509-540, 1903.
[3] A. Pór, Diploma Thesis, Eötvös University, Budapest, 1998.

